Deliverable No. 4.1

Project acronym:

Project title:

New species, processes and products contributing to increased production and improved sustainability in emerging low trophic, and existing low and high trophic aquaculture value chains in the Atlantic

Grant agreement No: **818173** Project co-funded by the European Commission within the Horizon 2020 Programme Start date of project: **1**st June **2019** Duration: **48 months**

Due date of deliverable:	31/10/2019
Submission date:	31/10/2019
File Name:	AquaVitae D4.1
Revision number:	01
Document status:	Final ¹
Dissemination Level:	PU ²
Re submission date after review:	6/3/2021

Revision Control

Revision control				
Role	Name	Organisation	Date	File suffix ³
Task leader, author	Celine Boechat	Nofima	23.06.2019	СВ
WP leader	Petter Olsen	Nofima	23.06.2019	PO
Scientific Advisor	Valur	MATIS	24.10.2019	VG
	Gunnlaugsson			
Coordinator	Philip James	NOFIMA	26.10.2019	PJ
	Revision after review meeting			
Task leader, author	Celine Boechat	Nofima	2/3/2021	СВ
WP leader	Petter Olsen	Nofima	2/3/2021	PO
Scientific Advisor	Valur	MATIS	5/3/2021	VG
	Gunnlaugsson			
Coordinator	Philip James	NOFIMA	6/3/2021	PJ

¹ Document will be a draft until it is approved by the coordinator

² PU: Public, PP: Restricted to other programme participants (including the Commission Services), RE: Restricted to a group specified by the consortium (including the Commission Services), CO: Confidential, only for members of the consortium (including the Commission Services)

³ The initials of the revising individual in capital letters

Deliverable D4.1

Scope, plans and initial stakeholder feedback

31/10/2019

Contents

Exec	cutive Summary	. 3
1.	Introduction	. 4
	i. Scope of AquaVitae	. 4
	ii. Scope of WP4 "Sensors, data integration and Internet of Things"	. 4
	iii. T4.1 Scoping, planning, and eliciting stakeholder feedback for sensor development	. 4
2. Co	ompany case examples	. 4
	i. DTU – 3D camera for mussels	. 4
	ii. Biolan – sulphite sensor for shrimps	. 5
	iii. Norce – integrated sensor data platform	. 5
3. N	lethod – spiral model of technology innovation	. 5
4. D	iscussion and conclusion	. 7
Арр	endix	10
	i. Stakeholder feedback	10
	ii. Subtask Specification	25

Executive Summary

In WP4 "Sensors, data integration and Internet of Things", three different sensors will be developed by DTU, Biolan and Norce. The sensors are already created, but in this WP the purpose is to develop them further in order to reach the practical needs and requirements of future buyers. To accomplish this task, stakeholders have been interviewed to evaluate their needs regarding the use of the sensors developed in the project. Based on this feedback, the scope and a plan of development for each sensor has been created.

The first sensor's prototype will be delivered by month 12, and tested and evaluated by the same, and eventually additional, stakeholders. A second prototype will be created by month 36. During the lifetime of the project, other deliverables will be written to follow the work in process of the sensor development:

- D4.3: Report on first development phase, M12
- D4.4: Report on second development phase, M30
- D4.5: Report on final development phase, M46

From the interviews, the stakeholder's main purposes regarding use the sensors are: better process control, better yield, and lower costs. The main requirements for the sensors are: accuracy, affordability, and robustness.

This deliverable gives a detailed overview of the different answers obtained, and contains the development plan for each of the different sensor prototypes for the next 12 and 18 months.

1. Introduction

i. Scope of AquaVitae

AquaVitae is a research and innovation project funded by the EU's Horizon 2020 programme, BD-08-2018. The project consortium consists of 36 partners, from 16 different countries, spread across four continents. In addition to Europe, partners are situated in countries bordering the Atlantic Ocean, including Brazil, South Africa, Namibia, as well as in North America. Its broad objective is to introduce new low trophic species, products and processes in marine aquaculture value chains (VCs) across the Atlantic.

ii. Scope of WP4 "Sensors, data integration and Internet of Things"

The objective of WP4 is to develop or improve and test new or existing sensors for use in the aquaculture industry using an Internet of Things (IoT) approach; this includes biochemical sensors, biomass sensors, and the integration and visualisation of data from environmental sensors (SO5). Specific objectives are:

- To develop new methods for biomass monitoring in offshore aquaculture sites by combining underwater laser cameras with computer vision and machine learning algorithms
- To design and develop a smart sulphite biosensing device for use in aquaculture production
- To develop an IoT platform for integration and analysis of sensor data related to aquaculture production
- To develop a Data Management Plan (DMP) for the data generated in AquaVitae, and to update the DMP at the end of every reporting period

iii. T4.1 Scoping, planning, and eliciting stakeholder feedback for sensor development

In WP9 the AquaVitae multi-actor platform will be created and put into operation, and this involves numerous stakeholder meetings on CS level. AV will employ a multi-actor approach to ensure that project outcomes are co-created with extensive involvement of users and other stakeholders, to ensure relevance and acceptability. In this task, the scope and a detailed multi-actor plan for the sensor development work that is linked to WP4 will be defined, based on the overall AV / WP project description, the priorities of the industry participants and the scientists, and the feedback from the stakeholders. The plan for the sensor development will contain descriptions of who will do what when and where, and it will need to be synchronised with the plans made for the CSs in WP1-3.

2. Company case examples

i. DTU – 3D camera for mussels

Develop new methods for biomass monitoring in offshore aquaculture sites (DTU, Norut)

This task will use and adapt next generation range-gated camera technology based on state-of-the art "time of flight" image sensors and innovative pulsed laser illumination (LiDAR). This is referred to as an Underwater Time Of Flight Image Acquisition (UTOFIA) camera, and it was an output from the H2020 UTOFIA project which ended in 2018. DTU will develop optimised range gating for mussel production, and specific software for volumetric reconstruction of the mussels lines with machine learning functionality. We will develop and test the system in CS8 and CS9, but it is also applicable in other CSs where biomass monitoring is relevant, e.g IMTA production and finfish production. The monitoring device will be integrated with the IoT platform to enable data storage, visualisation, and

analysis (machine learning). The encoding and exchange format for all data to be transferred to the IoT platform will be defined. APIs will be developed to enable the collection of data from the biosensor.

ii. Biolan – sulphite sensor for shrimps

Design and develop a smart sulphite biosensing device for use in aquaculture production (Biolan, Norut)

This task will deliver a prototype of a high-performance, battery-operated, portable and connected biosensor for sulphite monitoring, aimed to be used in shrimp production. The electronics will be designed to achieve technical specifications by first running simulations, and then testing different circuit architectures. The layout of the printed circuit board will be defined and created for mounting the prototypes. For software development, the tool-chain will be selected and configured, and signal processing and calibration processes will be coded. The mechanical structure design will consist of the design of the mechanical frame of the portable device based on 3D printing and/or other technologies for first prototypes and design of the final casts. The biosensing device will be integrated with the IoT platform to enable data storage, visualization, and analysis (machine learning). The encoding and exchange format for all data to be transferred to the IoT platform will be defined. APIs will be developed to enable the collection of data from the biosensor.

iii. Norce – integrated sensor data platform

IoT platform for integration and analysis of sensor data (Norut, Nofima)

Data gathering will be based on local infrastructure for power efficient and resilient communication between low power IoT devices without fixed infrastructure and will enable integration with existing IoT devices and platforms at the test sites. Machine learning functionality will be developed for sensor fusion, sensor calibration, sensor monitoring and prognosis. A flexible and simple visual tool (dashboard) to create AI training sets with automated training, validation and deployment of AI based monitors / virtual sensors will be developed. Edge computing support for sensors and AI trained monitors/virtual sensors will be provided for sites with no or unstable Internet access. The IoT platform will be tested in IMTA, shellfish, and finfish production cases.

3. Method – spiral model of technology innovation

AquaVitae consists of 5 VCs with Research and Innovation activities undertaken in 11 CSs (in addition to 2 cross cutting case studies) which will generate new knowledge and commercially exploitable project outputs of various types. The actual CS work takes place in WP1-3 and a three-step prototyping approach will be utilised in all of them. Prototype I and II of the exploitable project outputs will be delivered during the project (M13, M36) and the final version will be delivered at the end (M48). The multidisciplinary and cross-cutting WPs 4-8 will each deal with a number of CSs and will focus on issues particularly relevant for the CS in question. WPs 4-8, complemented by the IRG, the EAG and by other stakeholders engaged through the multi-actor approach, will deliver extensive evaluation of prototypes I and II from each CS to ensure a relevant and usable final version of the project output that industry partners can exploit.

Figure 1 Development process for AV outputs, based on 2 prototyping loops

The following tasks have been attributed to the three partners of WP4 developing sensors:

1. Contact stakeholder companies

For Biolan and DTU: approach and interview 3 to 4 stakeholder companies who might be interested in their sensor technology.

For Norce, who are working on an integrated data collection platform, there is a wider application for their platform. The aim is to find 8 to 10 companies that could see an application/use for this integrated data platform.

2. Use the interview guide

An interview guide that acts as a standard questionnaire to ensure consistency has been created by Nofima. It contains questions on detailed sensor-specific requirements from the stakeholders, including the desired purpose of the sensors and what attributes is primary for them.

3. Create a development process

Based on the feedback from the stakeholders, write a more detailed development process for the next years, breaking down the main goal into subtasks in order to fit the spiral development model based on the overall prototyping / stakeholder consultation plan:

- M1-M12 initial development phase culminating in a prototype available for user testing
- M13-M18 extensive stakeholder consultation and prototype testing
- M19-M30 main development phase culminating in a close to finished version
- M31-M36 extensive stakeholder consultation and testing of fully functional version
- M37-M46 final touches

4. Discussion and conclusion

In total the 3 partners have interviewed 23 stakeholders. 9 for DTU, 3 for Biolan and 11 for Norce.

The profile of these organizations is broken down in table 1.

Table 1. Organization's profile

Industry	Policy maker	NGO	Others
13	1	3	7*
	6		

* DTU as a stakeholder for NORCE has been classified in Industry and Others for research & development

Biolan and DTU have interviewed external stakeholders. Norce have interviewed 3 external stakeholders, 2 AquaVitae project partners and 6 CSs (CS 4-6; CS 8-10).

Seven of the stakeholder interviews where transcribed in the template form, and the results are attached in the appendix, along with the development process for the 3 partners. For confidentiality, sensitive content like personal information about the interviewees and localization of the companies have been removed from the forms.

Based on these 7 interviews the purposes of the stakeholders for using these sensors are mainly to have a better control on the process, a better yield and lower costs (see Fig. 2).

Figure 2: Stakeholder' purposes by using these sensors

The different stakeholders have also been asked to mention what attribute were important for the sensors. The different characteristics and their rank are shown in Fig.3.

Figure 3: Sensor's attributes rank by importance

The development process of the 3 partners, based on the stakeholder survey, is the following:

First prototype delivered by M12 attributes:

DTU:

• Ability to collect 3D images of object of interests (e.g. mussels)

Biolan:

- Bluetooth enabled biosensing device
- First prototype of an App on a mobile device as connection to BIOLAN cloud

Norce:

- A **preliminary** prototype version of the IoT platform, with support for **automatic** transfer and storage of data and **simple** visualization.
- Sensors of interest for the use-cases identified and integrated with the IoT platform.
- Machine learning functionality for sensor fusion, sensor calibration, sensor monitoring and prognosis.
- Integration with sensors and platforms at the selected test sites, were possible, for data import and export.
- **Preliminary** integration of the UTOFIA camera into the AquaVitae IoT platform, enabling automatic transfer and storage of data, and **simple** visualization. (with DTU)
- **Preliminary** integration of the BIOFISH biosensor into the AquaVitae IoT platform, enabling automatic transfer and storage of data, and **simple** visualization. (with Biolan)

Second prototype delivered by M36 attributes:

DTU:

- Autonomous edge detection and volume estimates for object of interest
- IoT interface

Biolan:

- Improvement of biosensing device by implementation of System on Chip electronics
- Improvement of the developed App

Norce:

- **Final** version of the IoT sensor platform, integrated with **all appropriate** IoT sensors.
- A visual tool (**dashboard**) to create AI training sets with automated training, validation and deployment of AI based monitors / virtual sensors.
- Edge computing support for sensors and AI based analysis.
- **Final** integration of the UTOFIA camera into the AquaVitae IoT platform, enabling automatic transfer and storage of data, **visualization** and **analysis**. (with DTU)
- **Final** integration of the **new** BIOFISH biosensor into the AquaVitae IoT platform, enabling automatic transfer and storage of data, visualization and **analysis**. (with Biolan)

In terms of interaction between the partners, as described in the description of action, DTU and Biolan may collaborate with Norce and their IoT platform at a later stage of development.

First, all three partners are developing their sensors separately. Biolan is focusing on the improvement of the device and the app and DTU is working on the detection of the object of interest by their camera as well as the IoT interface. Once both the camera and the sulphite sensor is operational they will decide if a collaboration with Norce and their sensor integrating platform makes sense and if it would be an add-on to their respective sensor.

Appendix

i. Stakeholder feedback

DTU

Interview details

Interview date:	13.09.2019
Interviewer:	Patrizio Mariani
Interview form (telephone, mail,	Telephone
face to face, survey, etc.):	
Respondent name:	
Respondent e-mail:	
Respondent company/organization:	
Company/organization address:	
Company/organization website:	

Questions relating to the respondent

What is your role in the company/organization (title)?	
Number of years in the company?	
What is your experience within the	
industry?	

Questions relating to the company/organization the respondent represents

What are your main business areas?	Software Development for image analyses
What is the size of your company	2 people in the software development unit
(number of people, SME?,	
profitability, harvest units, etc.)?	
Where are you located? Does	
location matter for your products?	
Who are your competitors? What	Flexibility strength, LABTRACK main product for over 20
are your main strengths /	years now
weaknesses? What is the market	
position for your product?	

Questions relating to the production process where the sensor is to be applied

In what production process do you	Fish monitoring and growth
intend to use the sensor?	
How many sensors would you need?	
Where in the process do you intend to	Licing the unit to develop new software
	Using the unit to develop new software
use the sensor? Geographically, where	
is this process located?	
How important is this process for your	central
company?	
In general, what are the challenges	Image quality
related to this process?	
What are the customer / consumer	
requirements relating to the outputs of	
this process?	
What sensors do you currently use to	Regular HD cameras
monitor this process?	
In what way would the sensor proposed	Augmented data on 3D
here be of use to you?	
What would you hope to achieve by	Better control and higher price
using this sensor (lower cost, better	
yield, better control, higher product	
price, customer preference,)?	
Please indicate importance of the	Small, fast, accurate
following sensor attributes	
- Low price	
- Small	
- Fast	
- Accurate	
- Robust	
- High battery capacity	
- Ability to operate offline	
- Easy to use	
- Easy to understand outputs	
- Integrated with existing systems	
 - (add as needed) 	

BIOLAN

Interview details

Interview date:	3th October 2019
Interviewer:	Arrate Jaureguibeitia
Interview form (telephone, mail, face to face, survey, etc.):	email, telephone
Respondent name:	
Respondent e-mail:	
Respondent company/organization:	
Company/organization address:	
Company/organization website:	

Questions relating to the respondent

What is your role in the company/organization (title)?	
Number of years in the company?	
What is your experience within the industry?	

Questions relating to the company/organization the respondent represents

What are your main business areas?	Fishery, aquaculture (turbot, vannamei shrimp, tilapia),
	manufacturing and selling of fishery and aquaculture
	products
What is the size of your company	More than 10,000 employers in Europe, America, Africa
(number of people, SME?,	and Asia. We farm in an area of 7,000 Ha, producing
profitability, harvest units, etc.)?	60,000 MT. We process 177,000 MT of seafood products in
	17 processing plants. We sell in 80 countries € 1.008 billion
Where are you located? Does	
location matter for your products?	
Who are your competitors? What	We market in 80 countries and leaders in Spain and
are your main strengths /	Portugal.
weaknesses? What is the market	is a brand at consumers' top
position for your product?	of mind Ranked 8 among the most chosen brands by
	Spanish consumers

Questions relating to the production process where the sensor is to be applied

In what production process do you	Sulphite treatment
intend to use the sensor?	
How many sensors would you need?	8 sensors could be fine

Where in the process do you intend to use the sensor? Geographically, where is this process located?	
How important is this process for your company?	Controlling sulfite levels in water treatment is very important, because of regulation compliance, and also because of process efficiency.
In general, what are the challenges related to this process?	Have the whole control of sulphite levels during the treatment processing.
What are the customer / consumer requirements relating to the outputs of this process?	immediate and reliable results
What sensors do you currently use to monitor this process?	BIOLAN in crustaceans
In what way would the sensor proposed here be of use to you?	Measurement of sulphite levels in treatment water in our ponds
What would you hope to achieve by using this sensor (lower cost, better yield, better control, higher product price, customer preference,)?	Lower cost, better yield, better control.
Please indicate importance of the following sensor attributes	From 1 to 5:
 Low price Small Fast Accurate Robust High battery capacity Ability to operate offline Easy to use Easy to understand outputs Integrated with existing systems (add as needed) 	 Low price: 5 Small: 4 Fast: 5 Accurate: 5 Robust: 5 High battery capacity: 2 Ability to operate offline: 4 Easy to use: 4 Easy to understand outputs: 5 Integrated with existing systems: 3

Do you have your own Data Management Software or LIMS? If yes, would you like to integrate the data retrieved by the sensors in this software?	Yes, but crustaceans data LIMS (Oralims). We would like to integrate the data
Do you find of interest a tool to visualize and share data retrieve by the sensors?	Yes, very interesting
Do you find of interest the possibility of obtaining statistics and alerts from data retrieved by the sensors?	Yes, huge of interest
Would you share your data	Yes to achieve project results Would not share with competitors

NORCE

Interview details

Interview date:	07.10.2019
Interviewer:	Lars Vognild
Interview form (telephone, mail,	Skype, and then email
face to face, survey, etc.):	
Respondent name:	
Respondent e-mail:	
Respondent company/organization:	
Company/organization address:	
Company/organization website:	

Questions relating to the respondent

What is your role in the	
company/organization (title)?	
Number of years in the company?	
What is your experience within the	
industry?	

Questions relating to the company/organization the respondent represents

What are your main business areas?	IMTA development, here industrializing seaweed cultivation
What is the size of your company (number of people, SME?, profitability, harvest units, etc.)?	SME
Where are you located? Does location matter for your products?	
Who are your competitors? What are your main strengths / weaknesses? What is the market position for your product?	Seaweed cultivators, specifically sugar kelp

Questions relating to the production process where the sensor is to be applied

In what production process could you envision the use of a sensor?	Macroalgae cultivation in ocean rigs
How many sensors would you ideally want to use? and are there any reasons why you	Outgrowing in ocean phase: Salinity, light, temperature, phosphorus
would deploy fewer sensors than the ideal?	Video monitor of: Growth and epiphyte colonization
Where in the process do you intend to use the sensor? Geographically, where is this process located?	Outgrowing in ocean phase, Norwegian coast
How important is this process for your company?	Central

In general, what are the challenges related to this process?Maximizing growth, optimizing growth conditions, minimizing epiphyte colonization prior to harvestWhat are the customer / consumer requirements relating to the outputs of this process?Macroalgae for food ideally free of epiphytesWhat sensors do you currently use to monitor this process?Unable to ascertain info at point of interview. Monitoring of ocean conditions in use, source of info or technology used unclearWhat would you hope to achieve by using a sensor (lower cost, better yield, better control, higher product price, customer preference,)?Optimization of localities, better control of parameters relevant for growth possibly enabling better yield, better control of appearance and biomass increasePlease indicate importance of the following sensor attributesLikely all-Small -		1
What are the customer / consumer requirements relating to the outputs of this process?Macroalgae for food ideally free of epiphytesWhat sensors do you currently use to monitor this process?Unable to ascertain info at point of interview. Monitoring of ocean conditions in use, source of info or technology used unclearWhat would you hope to achieve by using a sensor (lower cost, better yield, better control, higher product price, customer preference,)?Optimization of localities, better control of parameters relevant for growth possibly enabling better yield, better control of appearance and biomass increasePlease indicate importance of the following sensor attributesLikely all-Low price - SmallLikely all-Fast - AccurateAccurate - Robust-High battery capacity - - Ability to operate offline - Easy to understand outputs - Integrated with existing systemsIntegrated with existing systems		
requirements relating to the outputs of this process?Unable to ascertain info at point of interview. Monitoring of ocean conditions in use, source of info or technology used unclearWhat would you hope to achieve by using a sensor (lower cost, better yield, better control, higher product price, customer preference,)?Optimization of localities, better control of parameters relevant for growth possibly enabling better yield, better control of appearance and biomass increasePlease indicate importance of the following sensor attributesLikely all-Low price-Small-Fast-Accurate-Robust-High battery capacity-Ability to operate offline-Easy to understand outputs-Integrated with existing systems	related to this process?	minimizing epiphyte colonization prior to harvest
this process?Unable to ascertain info at point of interview. Monitoring of ocean conditions in use, source of info or technology used unclearWhat would you hope to achieve by using a sensor (lower cost, better yield, better control, higher product price, customer preference,)?Optimization of localities, better control of parameters relevant for growth possibly enabling better yield, better control of appearance and biomass increasePlease indicate importance of the following sensor attributesLikely all-Low price-Small-Fast-Accurate-Robust-High battery capacity-Ability to operate offline-Easy to understand outputs-Integrated with existing systems	What are the customer / consumer	Macroalgae for food ideally free of epiphytes
What sensors do you currently use to monitor this process?Unable to ascertain info at point of interview. Monitoring of ocean conditions in use, source of info or technology used unclearWhat would you hope to achieve by using a sensor (lower cost, better yield, better control, higher product price, customer preference,)?Optimization of localities, better control of parameters relevant for growth possibly enabling better yield, better control of appearance and biomass increasePlease indicate importance of the following sensor attributesLikely all-Low price-Small-Fast-Accurate-Robust-High battery capacity-Ability to operate offline-Easy to use-Easy to understand outputs-Integrated with existing systems	requirements relating to the outputs of	
monitor this process?Monitoring of ocean conditions in use, source of info or technology used unclearWhat would you hope to achieve by using a sensor (lower cost, better yield, better control, higher product price, customer preference,)?Optimization of localities, better control of parameters relevant for growth possibly enabling better yield, better control of appearance and biomass increasePlease indicate importance of the following sensor attributesLikely all-Low price-Small-Fast-Accurate-Robust-High battery capacity-Ability to operate offline-Easy to use-Easy to understand outputs-Integrated with existing systems	this process?	
technology used unclearWhat would you hope to achieve by using a sensor (lower cost, better yield, better control, higher product price, customer preference,)?Optimization of localities, better control of parameters relevant for growth possibly enabling better yield, better control of appearance and biomass increasePlease indicate importance of the following sensor attributesLikely all-Low price-Small-Fast-Accurate-Robust-High battery capacity-Ability to operate offline-Easy to understand outputs-Integrated with existing systems	What sensors do you currently use to	Unable to ascertain info at point of interview.
using a sensor (lower cost, better yield, better control, higher product price, customer preference,)?relevant for growth possibly enabling better yield, better control of appearance and biomass increasePlease indicate importance of the following sensor attributesLikely all- Low priceLikely all- SmallFast- AccurateAccurate- RobustHigh battery capacity- Ability to operate offlineEasy to use- Easy to useIntegrated with existing systems	monitor this process?	-
better control, higher product price, customer preference,)?better control of appearance and biomass increasePlease indicate importance of the following sensor attributesLikely allfollowing sensor attributesLikely all-Low price-Small-Fast-Accurate-Robust-High battery capacity-Ability to operate offline-Easy to use-Easy to understand outputs-Integrated with existing systems	What would you hope to achieve by	Optimization of localities, better control of parameters
customer preference,)?Likely allPlease indicate importance of the following sensor attributesLikely all-Low price-Small-Fast-Accurate-Robust-High battery capacity-Ability to operate offline-Easy to use-Easy to understand outputs-Integrated with existing systems	using a sensor (lower cost, better yield,	relevant for growth possibly enabling better yield,
Please indicate importance of the following sensor attributesLikely allfollowing sensor attributesLow price-Small-Fast-Accurate-Robust-High battery capacity-Ability to operate offline-Easy to use-Easy to understand outputs-Integrated with existing systems	better control, higher product price,	better control of appearance and biomass increase
following sensor attributes-Low price-Small-Fast-Accurate-Robust-High battery capacity-Ability to operate offline-Easy to use-Easy to understand outputs-Integrated with existing systems	customer preference,)?	
 Low price Small Fast Accurate Robust High battery capacity Ability to operate offline Easy to use Easy to understand outputs Integrated with existing systems 	Please indicate importance of the	Likely all
 Small Fast Accurate Robust High battery capacity Ability to operate offline Easy to use Easy to understand outputs Integrated with existing systems 	following sensor attributes	
 Fast Accurate Robust High battery capacity Ability to operate offline Easy to use Easy to understand outputs Integrated with existing systems 	- Low price	
 Accurate Robust High battery capacity Ability to operate offline Easy to use Easy to understand outputs Integrated with existing systems 	- Small	
 Robust High battery capacity Ability to operate offline Easy to use Easy to understand outputs Integrated with existing systems 	- Fast	
 High battery capacity Ability to operate offline Easy to use Easy to understand outputs Integrated with existing systems 	- Accurate	
 Ability to operate offline Easy to use Easy to understand outputs Integrated with existing systems 	- Robust	
 Easy to use Easy to understand outputs Integrated with existing systems 	 High battery capacity 	
 Easy to understand outputs Integrated with existing systems 	 Ability to operate offline 	
- Integrated with existing systems	- Easy to use	
	 Easy to understand outputs 	
(add as needed)	 Integrated with existing systems 	
	(add as needed)	

Do you have issues with existing sensors	Unable to ascertain
you are using?	
What information gap have you	Unable to ascertain
identified?	
How would a flexible sensor platform	Likely most use for fixed monitoring at outgrowing site
allowing you to place sensors	over growing period
temporarily in other locations be useful	
to you?	

Interview details

Interview date:	03/10/2019
Interviewer:	Lars Vognild
Interview form (telephone, mail,	Skype
face to face, survey, etc.):	
Respondent name:	
Respondent e-mail:	
Respondent company/organization:	
Company/organization address:	
Company/organization website:	

Questions relating to the respondent

What is your role in the	
company/organization (title)?	
Number of years in the company?	
What is your experience within the	
industry?	

Questions relating to the company/organization the respondent represents

What are your main business areas?	Seaweed aquaculture and processing for food, cosmetics and feed additives. Fish farming as part of the IMTA system.
What is the size of your company (number of people, SME, profitability, harvest units, etc.)?	SME, 18 people, first positive year in 2017. Sales from production close to 500 000€. Land-based integrated aquaculture unit with 14ha available. Currently 15,000m2 with fish and 700m2 with seaweed. Next year same for fish, increase of seaweed to 1400m2.
Where are you located? Does location matter for your products?	Yes: natura2000 site, water quality, existence of fish farms with available space for farming, strong processing capacities in the region, proximity to University of Aveiro.
Who are your competitors? What are your main strengths / weaknesses? What is the market position for your product?	Competitors: Seaweed suppliers across Europe, Microalgae suppliers; Vegetable ingredients Market: Premium (quality, origin, sustainability, technical support) but with democratization objectives. Organic certified. Seaweed sold as ingredient/additive; Seaweed-based finished products for specialized retail and Horeca channels.

In what production process could you envision the use of a sensor? How many sensors would you ideally want to use? are there any reasons why you would	In different phases of our production and processing. Production: Fish (Daily): salinity, DO, temperature Seaweed (Daily) hatchery and outdoor tanks: pH, temperature, salinity, irradiance (PAR), DIN (ammonia, nitrate, phosphate) – sporadically Seaweed Processing: Moisture content of the biomass during drying (to avoid several sampling moments during that process) No pre-defined number. More important is to get the data in a reliable, fast way. That allow us to process and use integrated data to manage the processes.
deploy fewer sensors than the ideal? Where in the process do you intend to use the sensor? Geographically, where is this process located? How important is this process for your	On-shore system. Easy access by road, access to all sorts of telecommunications. Mandatory
company? In general, what are the challenges related to this process?	Currently the data are collected manually with multiparametric sensors. Data are not integrated with the daily decisions and/or interpretation of events since data processing/treatment is a time-consuming activity
What is the customer / consumer requirements relating to the outputs of this process?	Customer looks for traceability, quality and sustainability measures.
What sensors do you currently use to monitor this process?	pH, Salinity, DO, Temperature – Hach Lange rough multiparametric Irradiance PAR – Apogee sensor or Li-Cor (spherical, better) DIN – sporadic measurements done by university lab (SKALAR water analyser) Moisture in biomass – Moisture scale
 What would you hope to achieve by using a sensor (lower cost, better yield, better control, higher product price, customer preference,)? Please indicate importance of the following sensor attributes Low price Small Fast Accurate Robust High battery capacity Ability to operate offline Easy to use Easy to understand outputs Integrated with existing systems 	Assistance to production management allowing processes to be more accurate and efficient = optimized production protocols, automation, lower costs, higher yields, better traceability) - Accurate - Low price - Robust - Integrated with existing systems - Ability to operate offline -

Questions relating to the production process where the sensor is to be applied

Do you have issues with existing sensors you are using?	They always need an assigned operator. Data is good, a lot but not integrated with production management platform.
What information gap have you identified?	
How would a flexible sensor platform allowing you to place sensors temporarily in other locations be useful to you?	Sent you an image. Very important as it would be important that the sensors can be moved between production units.

Interview details

Interview date:	2019-09-30
Interviewer:	Lars Vognild
Interview form (telephone, mail,	Skype
face to face, survey, etc.):	
Respondent name:	
Respondent e-mail:	
Respondent company/organization:	
Company/organization address:	
Company/organization website:	

Questions relating to the respondent

What is your role in the company/organization (title)?	
Number of years in the company?	
What is your experience within the	
industry?	

Questions relating to the company/organization the respondent represents

What are your main business areas?	Å: R&D
	K: Mussel farming
What is the size of your company	Å: 300 pers
(number of people, SME?,	К: 7-8
profitability, harvest units, etc.)?	
Where are you located? Does	
location matter for your products?	
Who are your competitors? What	K: Scanfjord, Danish mussel producers (even scallops),
are your main strengths /	mussel farmers in Northern Europe
weaknesses? What is the market	Strengths: processes efficency improvement, innovation,
position for your product?	durability/"keeping quality" aspects
	Weaknesses: needs to establish/build brand, increase
	production
	Market position: Producer

Questions relating to the production process where the sensor is to be applied

In what production process could you	Larvae/spawn settling, growth phase (growth, fouling,
envision the use of a sensor?	HABs)
How many sensors would you ideally	3-5 per cultivation
want to use?	Costs + maintenance
and are there any reasons why you	
would deploy fewer sensors than the	
ideal?	
Where in the process do you intend to	Larvae/spawn settling, growth phase (growth, fouling,
use the sensor? Geographically, where	HABs)
is this process located?	

How important is this process for your	Very (Larvae/spawn settling), desirable (growth phase)
company?	
In general, what are the challenges	Timing of larvae/spawn settling + concurrence with
related to this process?	fouling organisms
	Reduced product quality due to fouling
	Suboptimal farming conditions (food scarcity)
	Production stop due to toxic algae
What are the customer / consumer	Clean, toxin-free mussels
requirements relating to the outputs of	
this process?	
What sensors do you currently use to	None (manual sampling for HABs)
monitor this process?	
What would you hope to achieve by	Better process control
using a sensor (lower cost, better yield,	Increase number of settled mussles
better control, higher product price,	Better product quality -> better price
customer preference,)?	Predictive instead of reactive/production
	planning/harvest planning
Please indicate importance of the	- Low price
following sensor attributes	- Accurate
- Low price	- Robust
- Small	 High battery capacity
- Fast	- Easy to maintain
- Accurate	
- Robust	
 High battery capacity 	
 Ability to operate offline 	
- Easy to use	
 Easy to understand outputs 	
 Integrated with existing systems 	
(add as needed)	

Do you have issues with existing sensors you are using?	No – the issue is that they do not exist
What information gap have you identified?	See earlier answer
How would a flexible sensor platform	Valueable:
allowing you to place sensors	Assess new localities, locality-specific differences in
temporarily in other locations be useful	settling, assess food availability, food safety
to you?	

Interview details

Interview date:	23/092019
Interviewer:	Lars K. Vognild
Interview form (telephone, mail,	Email
face to face, survey, etc.):	
Respondent name:	
Respondent e-mail:	
Respondent company/organization:	
Company/organization address:	
Company/organization website:	

Questions relating to the respondent

What is your role in the	
company/organization (title)?	
Number of years in the company?	
What is your experience within the	
industry?	

Questions relating to the company/organization the respondent represents

What are your main business areas?	Research and education
What is the size of your company	Marine Shrimp Laboratory is a research lab. We have
(number of people, SME?,	working 6 professors, 4 technicians and around 40
profitability, harvest units, etc.)?	students.
Where are you located? Does	
location matter for your products?	
Who are your competitors? What	We have no competitors. We are a university. We do not
are your main strengths /	consider the other universities or research labs
weaknesses? What is the market	competitors.
position for your product?	

Questions relating to the production process where the sensor is to be applied

In what production process could you	On biofloc system (shrimp production system)
envision the use of a sensor?	
How many sensors would you ideally	1 per tank to measure oxygen and temperature.
want to use?	
and are there any reasons why you	
would deploy fewer sensors than the	
ideal?	
Where in the process do you intend to	
use the sensor? Geographically, where	
is this process located?	
How important is this process for your	It is important to control mainly the oxygen on the
company?	water, but we can survive without then.
In general, what are the challenges	The main challenge is to maintain the water quality
related to this process?	parameters adequate for the shrimp.
What are the customer / consumer	Our consumer are companies that contract us to do
requirements relating to the outputs of	experiments. So, they expect good and confinable data.
this process?	
What sensors do you currently use to	We have portable oximeters, pHmeters and
monitor this process?	thermometers.
What would you hope to achieve by	Better control of water quality and a sensor with low
using a sensor (lower cost, better yield,	cost and durability.
better control, higher product price,	
customer preference,)?	
Please indicate importance of the	 Low price – very important
following sensor attributes	- Small – not very important
- Low price	- Fast – important
- Small	 Accurate – very important
- Fast	- Robust - important
- Accurate	- High battery capacity – not very important
- Robust	- Ability to operate offline – important
- High battery capacity	- Easy to use – important
- Ability to operate offline	- Easy to understand outputs – important
- Easy to use	 Integrated with existing systems – important
- Easy to understand outputs	
- Integrated with existing systems	
(add as needed)	
· · ·	1

Do you have issues with existing sensors	They are expensive and the maintenance is also
you are using?	expensive.
What information gap have you	None
identified?	
How would a flexible sensor platform	It would be very interesting. Depending of the
allowing you to place sensors	experiment, I could use different sensors.
temporarily in other locations be useful	
to you?	

Interview details

Interview date:	20 September 2019
Interviewer:	Lars Vognild, NORCE
Interview form (telephone, mail,	Skype
face to face, survey, etc.):	
Respondent name:	
Respondent e-mail:	
Respondent company/organization:	
Company/organization address:	
Company/organization website:	

Questions relating to the respondent

What is your role in the	
company/organization (title)?	
Number of years in the company?	
What is your experience within the	
industry?	

Questions relating to the company/organization the respondent represents

What are your main business areas?	Research on fish reproduction
What is the size of your company	Embrapa is a public, non-profit research institute owned by
(number of people, SME?,	the Brazilian government, has 9545 employees in 47
profitability, harvest units, etc.)?	research units spread around Brazil. Its social profit of 9.77
	billion EUR (2018; 165 technologies and 220 cultivars)
Where are you located? Does	
location matter for your products?	Yes, our location is important given the species farmed in
	the region are climate/ecosystem specific.
Who are your competitors? What	Do not apply. We are a public research company.
are your main strengths /	
weaknesses? What is the market	
position for your product?	

Questions relating to the production process where the sensor is to be applied

In what production process could you envision the use of a sensor?	In researches willing to understand the influence of water quality parameters on the reproduction or a finfish species.
How many sensors would you ideally want to use? and are there any reasons why you would deploy fewer sensors than the ideal?	Ideally, I want to monitor water quality parameters (Temperature, water depth, dissolved O ₂) in 12 earth ponds where couples of <i>Arapaima gigas</i> breeders will be stocked. No.
Where in the process do you intend to use the sensor? Geographically, where is this process located?	Earth ponds are located at Embrapa Fisheries and Aquaculture,

How important is this process for your	It is important for research since environmental			
company?	parameters highly influence reproduction of finfish			
	species, and these parameters need to be monitored in			
	such experiments.			
In general, what are the challenges	Acquire cheap sensors; acquire know-how on			
related to this process?	automation (Arduino etc.)			
What are the customer / consumer	Do not apply.			
requirements relating to the outputs of				
this process?				
What sensors do you currently use to	At the moment, none.			
monitor this process?				
What would you hope to achieve by	Precision, reliable data for use in experiments on fish			
using a sensor (lower cost, better yield,	reproduction.			
better control, higher product price,				
customer preference,)?				
Please indicate importance of the	All important !			
following sensor attributes				
- Low price				
- Small				
- Fast				
- Accurate				
- Robust				
- High battery capacity				
- Ability to operate offline				
- Easy to use				
- Easy to understand outputs				
- Integrated with existing systems				
(add as needed)				

Do you have issues with existing sensors you are using?	Do not apply
What information gap have you identified?	Do not apply
How would a flexible sensor platform allowing you to place sensors temporarily in other locations be useful to you?	For the reproduction system we plan to have, this is not important at the moment.

ii. Subtask Specification

DTU

The overall T4.2 is broken up into sub-tasks as follows:

Subtask	Subtask description	Start month	End month	Participants in development process	Industry / user participants
T4.2.1	Data collection in tanks. The UTOFIA system will be used in the tank available at DTU to collect images from known targets at different level of complexity (from a simple box to mussels). Data will be stored in binary format for further analyses and software development.	8	12	DTU Aqua	none
T4.2.2	Software development . Analyses of the images and data collected in Task 4.2.1 are conducted here. The software will include computer vision and machine learning algorithms for object detection, edge identification, 3D estimates of object of interest, volume calculation. The software should be able to estimate volumes of object of interests.	13	18	DTU Aqua	Musholm, BIORAS
T4.2.3	Data collection in real conditions . UTOFIA system will be deployed in CS8 and images collected in real conditions. Operation at sea will be conducted in this task and samples taken for software validation.	19	30	DTU Aqua Norut	Musholm
T4.2.4	Refining software, integration of IoT technologies and end user test . (1MM). Images collected in T4.2.3 will be processed to refine the software and estimate uncertainties to finalize a first end-user interface. Integration with IoT systems will be provided in this task. Norut will be responsible to define the encoding and exchange format for all data to be transferred to the IoT platform and develop the APIs to enable the collection of data from the biosensor.	31	42	DTU Aqua Norut	Musholm, BIORAS

The first sensor prototype, developed end delivered by M12, will have the following attributes:

• Ability to collect 3D images of object of interests (e.g. mussels)

The focus of the second prototyping loop, from M18 (when user feedback is available) to M36, is to add the following attributes to the sensor:

- Autonomous edge detection and volume estimates for object of interest
- IoT interface

Collaboration between DTU and NORCE:

Subtask	Subtask description	Start month	End month	Participants in development	Industry / user
				process	participants
T4.2.5	Integration of the UTOFIA camera in the AquaVitae IoT platform, enabling automatic transfer and storage of data, and visualization and analysis.	6	18, 36	NORCE, DTU	Appropriate use-cases

The first sensor platform prototype, developed end delivered by M12, will have the following attributes:

• **Preliminary** integration of the UTOFIA camera into the AquaVitae IoT platform, enabling automatic transfer and storage of data, and **simple** visualization.

The focus of the second prototyping loop, from M18 (when user feedback is available) to M36, is to add the following attributes to the sensor platform:

• Final integration of the UTOFIA camera into the AquaVitae IoT platform, enabling automatic transfer and storage of data, visualization and analysis.

BIOLAN

The overall T4.3 is broken up into sub-tasks as follows:

Subtask	Subtask description	Start	End	Participants in	Industry / user
		month	month	development	participants
				process	
T4.3.1	Improvement of BIOFISH 700 by implementation of Bluetooth module; integration of the	1	12	BIOLAN	GRUPO
	Bluetooth communication solution				NUEVO
					PESCANOVA
T4.3.2	Development of an App that will be implemented on a mobile device acting as a data gateway	6	48	BIOLAN	GRUPO
	and user interface.				NUEVO
					PESCANOVA
T4.3.3	Development of an improved biosensing device based on System on Chip electrconics	12	48	BIOLAN	GRUPO
	(BIOFISH7000); this task will provide a fully functional hardware system; integration of the				NUEVO
	Bluetooth communication solution				PESCANOVA
	Integration of the biosensor into the AquaVitae IoT platform, enabling automatic transfer and				GRUPO
T4.3.4	storage of data, visualization and analysis.	6	18, 36	NORCE, BIOLAN	NUEVO
					PESCANOVA

The first sensor prototype, developed end delivered by M12, will have the following attributes:

- Bluetooth enabled biosensing device
- First prototype of an App on a mobile device as connection to BIOLAN cloud
- **Preliminary** integration of the BIOFISH biosensor into the AquaVitae IoT platform, enabling automatic transfer and storage of data, and **simple** visualization.

The focus of the second prototyping loop, from M18 (when user feedback is available) to M36, is to add the following attributes to the sensor:

- Improvement of biosensing device by implementation of System on Chip electronics
- Improvement of the developed App
- Final integration of the new BIOFISH biosensor into the AquaVitae IoT platform, enabling automatic transfer and storage of data, visualization and analysis

NORCE

The overall T4.4 is broken up into sub-tasks as follows:

Subtask	Subtask description	Start month	End month	Participants in development process	Industry / user participants
T4.4.1	Design and develop the IoT sensor platform.	6	12, 36	NORCE	
T4.4.2	Identify and integrate the needed sensors, IoT devices and platforms at the selected test sites.	6	12, 30	NORCE	The selected use-cases
T4.4.3	Develop machine learning functionality for sensor fusion, sensor calibration, sensor monitoring and prognosis.	6	12, 36	NORCE	
T4.4.4	Test and evaluate the IoT platform in selected IMTA, shellfish, finfish, or other production cases.	13	18, 36	NORCE	The selected use-cases
T4.4.5	Develop a flexible and simple visual tool (dashboard) to create AI training sets with automated training, validation and deployment of AI based monitors / virtual sensors.	19	36	NORCE	The selected use-cases
T4.4.6	Develop edge computing support for sensors and AI based analysis .	19	36	NORCE	

The first sensor platform prototype, developed end delivered by M12, will have the following attributes:

- A preliminary prototype version of the IoT platform, with support for automatic transfer and storage of data and simple visualization.
- Sensors of interest for the use-cases **identified** and **integrated** with the IoT platform.
- Machine learning functionality for sensor fusion, sensor calibration, sensor monitoring and prognosis.
- Integration with sensors and platforms at the selected test sites, were possible, for data import and export.

The focus of the second prototyping loop, from M18 (when user feedback is available) to M36, is to add the following attributes to the sensor platform:

- Final version of the IoT sensor platform, integrated with all appropriate IoT sensors.
- A visual tool (dashboard) to create AI training sets with automated training, validation and deployment of AI based monitors / virtual sensors.
- Edge computing support for sensors and AI based analysis